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1 Introduction

Today an increasing number of people using the internet, demands multi-media
services, like live-reports, video on demand, but also multidirectional communi-
cation like video-telephony, Voice over IP (VoIP) and audio/video/whiteboard
conferences with multiple participants.

Standard protocols like HTTP or FTP are not prepared for real-time. They
lack quality of service guarantees and good streaming capabilities.
Fortunately, the Internet Engineering Taskforce generated well defined stan-
dards for diverse protocols achieving all these wanted features.

This text will describe not only the Real-Time Protocol (RTP) and its feedback
mechanism, the Real-Time Control Protocol (RTCP), but will also present the
RTP profiles for audio and video conferences and a secure RTP profile using
packet encryption.

This secure RTP profile will be explained in further detail, containing the used
encryption algorithm and message authentication codes. To understand the
secure RTP profile, we also look closer into the RTP format and header speci-
fications and header compression.

After that, there is a short introduction into the Resource reSerVation Protocol
(RSVP), which allows quality of service over IP, and finally a high-level proto-
col, the Real-Time Streaming Protocol, which is needed to control multi-media
connections based on RSVP, sent via RTP according to the defined RTP profile.

2 Real-Time Protocol (RTP)

The Real-Time Protocol is defined in RFC 1889 [1]. It provides end-to-end
delivery services for all kinds of data with real-time characteristics. RTP it-
self does not define any behavior and handling of data types per se. So there
exist special profiles how to treat different data types. For audio and video
conferences, there is already a predefined profile (see section 4).

To make RTP easy to include in actual networks, it might be based on different
underlying standard protocol layers, like ST-II, UDP/IP, IPX or ATM AALS5.
The widest spread protocol is UDP, a packet-oriented protocol based on IPv4,
which offers checksum services but doesn’t guarantee, that packets arrive in
order or arrive at all. In a multimedia environment, dropped packets are more
favorable than resent packets, like TCP/IP would. Chances for a resent packet
to arrive in time are small, and to play eg. some video or audio frames f; ... fiin
when the user-shown stream already is at frame fi1 4., makes no sense at all.
Resending packets would also increase the needed network bandwidth and would
favor network congestion.

IP, and hereby UDP, also offers the interesting feature of multicasting, which
means having multiple clients receiving one and the same packet sent by a server.
This incredibly decreases network load and also guarantees smaller server-side



connection maintaining costs (eg. a server just streams his live stream, but he
has not to care about who is listening).

RTP itself also doesn’t guarantee delivery or prevent out-of-order delivery, but
includes packet sequence numbers and other useful information for real-time
multimedia data to reorder incoming packets.

To monitor and adjust quality of service of RTP streams, there is a real-time
control protocol (RTCP)[1], which carries information packets about lost RTP
packets, jitter, and so on.

2.1 Mixers and Translators

Mixers are positioned somewhere on the route between the server and the
clients, and change the incoming data in some means. So it might be useful,
to change high-quality video to a lower resolution, and stream this low-quality
video to a client connected via a low bandwidth network. All other clients
connected via high bandwidth networks receive the high-quality video. Since
every distinct RTP stream has a distinct RTP source identifier (SSRC), every
re-mixed stream gets a new identifier, but keeps track of the originating sources
as a “contributing source” (CSRC).

Translators forward RTP packets with their source identifiers intact, since
they don’t change the payload itself. A translator may be used on firewalls
which don’t allow multicast streams, so the mulicast is translated into unicast
and directly sent to the clients behind the firewall (enabling all possibilities of
authentication and other means of access control). Another typical usage for
translators would be as a gateway between eg. UDP/IP and ATM AALS.

2.2 Security

RTP does not provide any security features, but based on the underlying pro-
tocol or the application, eg. packet encryption might be implemented. How the
client and server generates and exchanges keys is not in the scope of RTP and
also has to be implemented somewhere else.

You find more about a RTP Profile for secure RTP in section 5.

2.3 RTP Packet Format

Figure 1 shows the RTP header on top of UDP/IP. Only the most important
fields of the RTP header itself will be discussed here, for more detailed informa-
tion please refer to RFC 1889[1].

2.3.1 Payload Type (7bits)

The payload type helps the application understanding and interpreting the RTP
data right. There are some predefined payload types depending on the used
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Figure 1: RTP Header on top of UDP/IP

RTP profile, eg. for video and audio conferences [5], there are payload types for
different audio (eg. GSM, MPEG-1 layer 3) and video encodings (eg. JPEG,
MPEG-1, MPEG-2, H.261).

2.3.2 Sequence Number (16 bits)

The sequence number is incremented for each RTP packet sent, and may be
used by the receiver to detect packet loss and to restore packet sequence. The
initial value should be a random number, to to make known-plaintext attacks
on encrypted packets more difficult. Even if the server itself doesn’t provide
packet encryption, the sequence number should be randomly chosen, because
there might be translators on a packets’ way which provide secure tunneling.

2.3.3 Timestamp (32 bits)

The timestamp has to be generated by a monotonically and linearly clock. To
allow sufficient jitter calculations and synchronization accuracy, the clock fre-



quency should be more fine-grained than eg. a given video frame rate or audio
sample rate. For security reasons, the timestamp should also be initiated with
a random number, so the system clock is only one factor of many and offers a
basic clue for calculations. Over multiple RTP packets, the timestamp might
also not be monotonic, even if the sequence number is: eg. MPEG encoded
video streams store frames in a different order than the have to be displayed
later on.

2.3.4 Synchronization Source Identifier (SSRC) (32 bit)

This is a randomly chosen ID for a RTP stream. The SSRC has to be unique
S0 a client, mixer or translator can distinguish between different RTP streams.
Even that the chance for multiple SSRCs is low, RTP implementations must be
prepared to detect and resolve collisions.

2.3.5 Contributing Source Identifiers (CSRC) (32 bit)

As discussed before, mixers include all originating sources as “contributing”
ones for the newly generated RTP stream. the CSRC Count (CC) field (4 bits)
holds the number of stored CSRCs and is in the range from 0 to 15. If there
are more than 15 sources, all > 15 are lost.

2.4 Header Compression

In the minimal case a IP/UDP/RTP header block has a size of 40 bytes. Taking
an 20 ms packetization interval, we have 16 kbit/s only for headers. This is
definitely too much overhead for small serial links, so RFC 2508 [3] defines a
way for IP/UDP/RTP header compression from 40 bytes down to 2 bytes (or 4
bytes with checksums). The compression protocol works for a static serial line
(a modem connection) between a dial-in user and his ISP.

Compression is done by knowing the fact that only fifty percent of all data fields
change from one to the other packet, so it is redundant to resend these fields.
On the other hand, some values may change, but in a predictable (constant)
manner, so the second-order difference is also zero.

So after transferring the full header and the first-oder difference once, it is
enough to keep track of a connection with an 8 bit connection ID (CID) and
when a compressed packet with this CID arrives and indicates no second-order
differences, the receiver can reconstruct the original header with no loss of in-
formation.

If there was a second-order difference, the state change is sent in a little bigger
packet. On major changes (eg. new CIDs arrive) more packets have to be sent
to return to full compression mode.



3 Real-Time Control Protocol (RTCP)

The RTP control protocol (RTCP) is based on the periodic transmission of
control packets to all participants in the session, using the same distribution
mechanism as the data packets. Data and control packets have to be two dif-
ferent streams, so when we are using UDP/IP, we use two consecutive ports (n
for data, n + 1 for control, where n has to be an even number, so n + 1 forcably
will be an odd number). This also allows monitoring stations, only to receive
RTCP packets and gather statistics.

RTCP performs four functions:

e The main feature is to send information about the quality of the describing
stream. This feedback can be immediately used for adaptive encodings, to
decrease or increase the quality of video or audio or to switch to a different
encoding mechanism.

e RTCP also has clear-text information packets, where the most important
is the CNAME, which is the canonical name for a RTP stream. So if
the SSRC changes because of collision, all participants keep track of the
stream by its CNAME.

e Each participant sends his control packets to all the others. This is needed
to calculate the rate at which the RTCP packets are sent, so that there
aren’t too many RTCP packets in comparison to RTP packets on the net.

e Functions 1-3 should be used in all environments, but there is a further
possible usage. RTCP could be used to keep track of all joined participants
in a loosely controlled session, where virtually everyone may connect and
disconnect without membership control or parameter negotiation.

3.1 RTCP Packet Format
3.1.1 Sender and Receiver Reports

The only difference between the RTCP sender report (figure 2) and the RTCP
receiver report (figure 3), besides the packet type code, is 20-byte sender infor-
mation section with relating timestamps and a packet and byte-counter. The
NTP Timestamp stores the globally defined time when the report was sent. The
RTP Timestamp corresponds to the timestamp format used in the RTP packets.
This is important for synchronizing different RTP streams like audio and video.
Then a various number of report blocks (according to the report count field)
are attached. They store the SSRC, some statistics about packet loss and jitter,
and finally the time of the last sent RTCP packet related to this SSRC and the
time since that last sent RTCP packet. This is very useful for the receiver of
this packet to calculate the roundtrip time.
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Figure 2: RTCP Sender Report (Packet Type = 200)

3.1.2 SDES: Source Description RTCP Packets

Since every RTP stream has some cleartext properties like its canonical name,
RTCP offers a way to distribute those to all participants. Those properties are

e CNAME: the canonical identifier for a RTP stream (eg. jdoe@home:mystream)

e NAME: username, who set up this RTP stream

EMAIL: electronic mail address of the above user

PHONE: phone number in the international format (leading + and coun-
try code)

LOC: geographic user location

TOOL: application name and version

e NOTE: notice or status field about the source
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Figure 3: RTCP Receiver Report (Packet Type = 201)

e PRIV: private application-specific extensions
e END: indicates the last SDES item for this SSRC/CSRC.

To keep network load low, there should be an algorithm for sending different
SDES packets: eg. always send CNAME, but send EMAIL every fifth packet,
don’t send all the others.

3.1.3 BYE: Goodbye RTCP Packets

There is a special BYE packet with the packet type set to 203. It might also
include a text like “camera malfunction”. Mixers should forward those BYE
packets unchanged and if necessary, send their own BYE packets for their gen-
erated SSRCs.



SSRC/CSRC of first source
SDES items

further SDES items

SSRC/CSRC of last source
SDES items

further SDES items

Figure 4: SDES: Source Description RTCP Packet(Packet Type = 202)

3.1.4 APP: Application-defined RTCP Packets

Finally, there is an APP packet, which is open for experimental use and for
application-specific functions. It uses the packet type 204.

3.2 Security

As for RTP, there is no direct support for authentication, integrity, and confi-
dentiality. All these features have to be supported by the underlying layer.
For simple packet encryption with a stream cypher, there has to be 32-bit ran-
dom number prepended to all regular RTCP packets. This avoids vulnerability
to known plaintext attacks.

It would also make sense to only encrypt eg. RTP packets and SDES packets,
but not sender and receiver reports, so other monitoring stations are able to
generate statistics.

The RTP internet draft[2], which is the successor of the RFC for RTP [1],
recommends the usage of the DES (data encryption standard) in cypher block
chaining mode (CBC) as described in section 1.1 of RFC 1423 [4].

The initialization vector is zero because there is already the random prefix for
RTCP or the randomly initialized RTP timestamp and sequence number. If 56
bit keys are not secure enough (and it shouldn’t be these days), it is easy to use
triple-DES instead.

The key management infrastructure has to be provided by other protocols in the
application. As pointed out before, all encryption may be realized in tunneling
the data between two RTP translators.

These recommendations are all outdated by a new RTP Profile for secure RTP ,
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which exactly defines the encryption in great detail. We will discuss this profile
in section 5.

4 RTP Profile for Audio and Video Conferences
(RTP/AVP)

Since RTP itself doesn’t know what data it is transporting, there exist well
defined profiles for all different kinds of multimedia data. RFC 1890 [5] describes
the profile for audio and video conferences. It supports all different audio and
video formats and how they have to be stored in the RTP payload data area.
RFC 1890 defines a default 20 ms packetization rate (which might go up to
200 ms to reflect high-compression formats’ natural frame size). The sampling
frequency should be chosen out of 8000, 11025, 16000, 22050, 24000, 32000,
44100, 48000.

Multi-channel sample-based or frame-based encodings should order their chan-
nels from left-to-right, like (left channel 1. sample) (right channel 1. sample)
(left channel 2. sample) (right channel 2. sample).

Only some audio and video encodings are shown here, for a complete list refer
to RFC 1890 [5].

4.1 Some Audio Encodings
RFC 1890 exactly describes the packet formats of all audio encodings bit by bit.

4.1.1 G.722, G.723, G.726, G.728, G.729

According to ITU-T Recommendations, those encoding standards define au-
dio encoding with rates between 6.4 kbit/s up to 64 kbit/s. Those encodings
are used for videophone terminal applications up to internet telephony in high
quality.

4.1.2 GSM, GSM-HR, GSM-EFR
The European GSM standard for full-rate speech at 13 kbit/s (33 bytes for 160
samples), half-rate speech (14 bytes) and extended full-rate speech (31 bytes).

4.1.3 MPA

MPA defines the payload for MPEG-1 and MPEG-2 audio in the differently
complex layers I, IT, and III. The exact payload format for MPEG-1/MPEG-2
audio and video can be found in RFC 2250 [7].
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4.1.4 RED

The redundant audio payload format “RED” (defined in RFC 2198 [8]) holds not
only compressed audio data for the current interval, but also a highly compressed
version of the last interval. This allows to reconstruct lost packets in better
quality than silence substitution or amplitude/frequency interpolation.

4.2 Some Video Encodings

The RTP timestamp frequency is defined as 90,000 Hz for all the following video
encodings. This suffices enough for jitter estimation and calculations with RTCP
timestamps.

4.2.1 Motion JPEG

MJPEG defines a way of storing consecutive JPEG-encoded still-images. Some
initialization tables are only sent once and then each raw image data is sent

with only a minimum of necessary header information. Find out more about
RTP/MJPEG in RFC 2435 [9].

4.2.2 H.261, H.263

According to ITU-T Recommendations, those encoding standards define video
encoding with low bitrates up to 64 kbit/s. These encodings are used for video-
phone terminal applications and video telephony.

4.2.3 MPV

MPYV defines the payload for MPEG-1 and MPEG-2 video ad described in RFC
2250 [7].

5 Secure Real-Time Protocol (SRTP)

The Secure Real-Time Protocol (SRTP) [10], a profile for RTP, provides privacy,
message authentication, and replay protection.

SRTP achieves high throughput and low packet expansion by using an additive
stream cypher for encryption, a universal hashing based function for message
authentication, and an “implicit” index for sequencing based on the RTP se-
quence number. The encrypted payload contains data defined by another profile
like RTP/AVP.

Figure 5 shows the SRTP packet format. It is identical to the RTP format,
except the 4-byte authentication tag at the very end. The encrypted block starts
after the 12th byte, so the main header with the sequence number, timestamp
and the SSRC is still visible. This is needed for parsing and putting the arrived
SRTP packet into the right cryptographic context.

12
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Figure 5: SRTP packet format

The full packet starting from byte 0 up to (including) the payload is cryp-
tographically hashed with a MAC, so it is impossible to change the cleartext
header data or concatenate different headers and payloads on a packets way to
the receiver.

5.1 Cryptographic context

The sender and receiver has to maintain some cryptographic state information.
It contains

e an encryption key k.

e 3 message authentication key k.,

a 32-bit rollover counter r (which counts how many times the 16-bit RTP
sequence number wrapped around 0xFFFF)

the last authenticated sequence number s;

areplay list L (only receiver side), which keeps track of already processed
packets (or better, their sequence numbers).

The SSRC, the encryption key and the authentication key have to remain fixed
for the whole session, and SRTP doesn’t provide any means of key management
and distribution.
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5.2 Cryptographic Background

The default encryption cypher is the AES block cypher in counter mode. Ad-
vanced Encryption Standard (AES) [11] is not a particular encryption algorithm,
but defines guidelines for an upcoming AES-compliant block cypher. This al-
gorithm will be used by the US Government and hopefully by a wide-spread
community world-wide. AES specifies the need for a symmetric key block-
cypher with a 128-bit block size and three key sizes of 128, 192 and 256 bits.
An AES report [12] describes all possible candidates in detail. Presented on
October 2000, the winner is “Rijndael” [13], and will be proposed as the new
Advanced Encryption Standard (AES).

5.2.1 AES winner: Rijndael

A data block to be processed using Rijndael [13] is partitioned into an array of
bytes, and each of the cipher operations is byte-oriented.

Rijndael is a substitution-linear transformation network with 10, 12 or 14 rounds,
depending on the key size.

Rijndaels round function consists of four layers. In the first layer, an 8x8 S-box
is applied to each byte. The second and third layers are linear mixing layers,
in which the rows of the array are shifted, and the columns are mixed. In the
fourth layer, subkey bytes are XORed into each byte of the array. In the last
round, the column mixing is omitted.

Rijndael was submitted by Joan Daemen (Proton World International) and
Vincent Rijmen (Katholieke Universiteit Leuven).

5.2.2 Block cyphers in Segmented Integer Counter Mode (SIC)

To increase resistancy to redundant plaintext attacks, the used block-cypher is
used in an additive manner.

The well-known approach is the cypher block chaining mode (CBC), where
first the plaintext block B; is XORed with the previous block B;_; and then
encrypted.

This approach is not feasible for multi-media data, since we can’t (and don’t
want to) guarantee, that no packets are dropped. So without receiving all blocks
B;(0 <=j < i), we wouldn’t be able to restore the block B;.

To overcome this obstacle, we use a unique counter, encrypt this and then XOR
(®) the result with our actual plaintext block (see figure 6).

One might say that successive ctr and ctr + 1 have a small Hamming difference,
and might facilitate differential cryptoanalysis. However, this concern is only
valid if the underlying cipher is differentially weak, so it’s not the fault of the
Counter Mode approach, but has to be faced by eg. AES criterias for the
upcoming standard.

14
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Figure 6: Encryption and Decryption Process in Counter Mode

In the SRTP case, the counter is set to
ctr = [(r * 65536) + seq] * 4096 + i

where r is the rollover counter, seq is the RTP sequence number and 7 is a counter
for each 128-bit block. Since the maximum size of an IP packet is 64KB, this
splits up to a maximum of 4096 blocks. IP Jumbo frames would require different
values, but are not likely to be used for RTP-based multimedia traffic.

Since the counter has to be unique in its whole life time, and our rollover counter
r is 32 bits, we have a maximum of 248 = 281,474,976, 710,656 SRTP packets
before the SSRC and the k. and k,, keys have to be changed. This means to
completely start a new RTP streaming session, but taken a 20 ms packetization
time (eg. audio profile), this would be every 178,510 years. Non the less, if this
happens, the actual session has to be renewed.

5.2.3 Message Authentication

The default Message Authentication Code (MAC) is UMAC [14]. Tt is very fast
(eg. one clock cycle for one byte) and also offers extra security not only by a
cryptographic key, but also a “nonce”, in our case the already used counter ctr.
UMAC uses the following function:

UMAC = Eaps(kpm, ctr) & UHASH (kp, B;)

Where first our AES-compliant algorithm E4gg is used on counter ctr with the
authentication key k,,, and the result is XORed with the 4 byte keyed hash
value of our block B;, where the hashing is obviously the most time consuming
part onf this operation.

15



UHASH is a keyed hash function, which takes a string of arbitrary length and
returns a fixed-length string of UMAC-OUTPUT-LEN bytes (for us, 4 bytes).

UHASH does its work in three layers. First, a hash function called NH is used
to compress input messages into strings which are typically many times smaller
than the input message. NH is optimized for speed, since it has to deal with
the biggest junk of bytes.

Second, the compressed message is hashed with an optimized “polynomial hash
function” into a fixed-length 16-byte string. Finally, the 16-byte string is hashed
using an “inner-product hash” into a string of length 2 bytes. These three layers
are repeated (with a slightly modified subkey from our master key k) until the
outputs total UMAC-OUTPUT-LEN bytes. In our case, we need 2 rounds for
our 4 byte hash value.

Note: Because the repetitions of the three-layer scheme are independent (aside
from sharing some internal key), it follows that each “word” of the final output
can be computed independently. Hence, to compute a prefix of a UMAC tag,
one can simply repeat the three-layer scheme fewer times. Thus, computing a
prefix of the tag can be done significantly faster than computing the whole tag.
This allows the receiver to trade guaranteed authenticity with speed, because
he might only calculate 2 out of 4 bytes UHASH value (by just doing one round
of the three-layer algorithm).

Note: even if we only calculate a prefix hash value, we can XOR it with the
same length prefix of Egggs(kn, ctr)!

To do so makes sense to avoid denial of service attacks, because packets can be
processed more quickly until replay is detected.

5.3 Replay Detection

A packet is “replayed”, when someone in between the network path keeps a
passing by packet and re-injects it later on.

The replay list L is a simple bit field over the last SRTP_WINDOW _SIZE se-
quence numbers SRTPseq (SRTPseq is defined as r * 65,536 + seq).

This is implemented as a sliding window approach, always covering the window
between SRT Pseq — SRTP.WINDOW _SIZE and SRT Pseq. Every incom-
ing packet with a RTPseq smaller than SRT Pseq — SRTP . WINDOW _SIZE
should also be treated as replayed.

Every detected replay should be logged. Still, our protocol will then paranoically
overreact on erroneously cloned packets on some misconfigured routers, so there
should be a “knob” for tuning this at the application.

The SRTP draft suggests, that the SRTP_WINDOW _SIZE must be at least 64,
but might be higher.

So how big should SRTP_WINDOW _SIZE really be? This depends
mainly on the receiver buffer size and hereby the requirement for ”real” real-
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time. The bigger the buffers, the more time it takes to fill them up for the first
time, so this increases the communication lag.

For unidirectional communication (eg. radio), a bigger lag (like 3 seconds) and
hereby a higher buffer size is allowed and tolerated, but video conferences can’t
tolerate more than, let’s say, 500 ms lagging.

The recommended 20ms packetization time leads to 50 packets per second. So
for video conferences, receiving data which is out of the 500 ms buffer, has to
be discarded anyway. This would lead to throw away every packet older than
s1 — 25, so SRTP_WINDOW _SIZE should be 32 (for efficiencys sake).

So for the above example, why should we detect and log replay for packets we
would discard anyway? So maybe the "MUST be at least 64” statement is a
little strong.

6 Secure Real-Time Control Protocol (SRTP)

The Secure Real-Time Control Protocol (SRTCP) [10] is described in the same
profile as SRTP, and provides the same features, namely privacy, message au-
thentication, and replay protection.

It is based on the same ideas like SRTP, so there is the normal RTCP header,
with an attached authentication tag and an SRTCP index (figure 7). The ad-
ditional index was not necessary in the SRTP packets, because they generated
their index with the RTP sequence number and the rollover counter).

v| |Recnt Ptype:200 | Length
SSRC of source

... Sender Info ...
... Report Block 1 ....

... List of other Report Blocks

encrypted protion
authenticated protion

profile—specific extensions
SRTCP index

authentication tag

Figure 7: SRTCP Packet Format

SRTCP also uses an AES compliant additive block cypher in counter mode
(SIC), and the UMAC message authentication code.

Since RTCP packets are not sent that frequently as RTP packets are, we rely
on the 32-bit SRTCP index, which gives us 232 = 4,294,967,296 SRTP packets
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before the index would be re-used for encryption. If an SRTCP stream reaches
this maximum, the last packet has to be a RTCP BYE packet and the key pairs
and connection status has to be reinitialized.

7 Real-Time Resource ReSerVation Protocol (RSVP)

As mentioned earlier, the Real-Time Protocol (RTP) runs on different lower-
level transport layers like UDP/IP and ATM AALS5. Thus, RTP has no means
to guarantee any quality of service. ATM supports different QoS types but
UDP/IP, based on best-effort internet technology, doesn’t. Even if IP runs over
ATM, all standard “features” of IP are translated to ATM, so is the best-effort
packet-forwarding property.

To overcome this obstacle, RFC 2205 [15] defines a Resource Reservation Pro-
tocol (RSVP) based on IP. To adopt this approach to IP-over-ATM, RFC 2382
[16] maps this RSVP to ATM.

RSVP supports three traffic types: best effort (as known from standard IP, but
with reserved paths), rate-sensitive and delay-sensitive.

7.1 rate-sensitive (guaranteed bit rate) Reservations

An application might request 100 kbps of bandwidth, and even if it then sends
200 kbps for a certain time, only 100 kbps will go through and the rest is delayed.
So we trade timeliness for a guaranteed bit rate.

7.2 delay-sensitive Reservations

For example, the MPEG-2 codec sends frames with a certain fixed frame rate,
but there are different sizes in the frames. Very simplified, there are full frames
(eg. 7 Mbps) and then some following delta-frames (3 Mbps), because those
frames only store the difference to the preceeding frame. But still, it is important
that all sent frames arrive in time. There exists a RSVP controlled-delay service
(non-real time) and a predictive service (real time).

7.3 Lifetime of a reservation

After a reservation request, RSVP path messages are sent through the network
to set up the reservation in each routing node. RSVP maintains a soft-state, so
if the end-system doesn’t send packets on a regular basis, a timeout occurs and
all routers discard the reservation. If a router breaks down, this is detected by
connected routers and the routing path is reassigned. RSVP teardown messages
remove the path and reservation state without waiting for the cleanup timeout
period.

Of course, this all enforces routers which understand RTSP. If not, RSVP can
be tunnelled over a “non-RSVP” network.
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End System Host
Reservation Protocol RSVP

¥
L RSVP . RSVP
Application | _| baemon |- Policy Routing Daemon || Policy
Control Control
\ Admission \ Admission
Control Control
Packet Packet Packet Packet
Classificationf | Scheduler Classification | Scheduler
Data Data

Figure 8: RSVP reservation between the first router and the host

FEach node capable of resource reservation has several local procedures for reser-
vation setup and enforcement (see figure 8). Policy control determines whether
the user has administrative permission to make the reservation. In the future,
authentication, access control and accounting for reservation will also be imple-
mented by policy control. Admission control keeps track of the system resources
and determines whether the node has sufficient resources to supply the requested
QoS.

The RSVP daemon checks with both procedures. If either check fails, the RSVP
program returns an error notification to the application that originated the
request. If both checks succeed, the RSVP daemon sets parameters in the
packet classifier and packet scheduler to obtain the requested QoS. The packet
classifier determines the QoS class for each packet and the packet scheduler
orders packet transmission to achieve the promised QoS for each stream.

8 Real-Time Streaming Protocol (RTSP)

The Real-Time Streaming Protocol (RTSP) [17] establishes and controls either
a single or several time-synchronized streams of continuous media such as audio
and video. The stream itself is typically not included, but might be also be
interleaved into the control stream. The stream might also be sent via RTP, or
any other real-time protocol like RealNetworks RDP.

RTSP provides “VCR-style” remote control functionality, like play, pause, fast
forward, reverse, and absolute positioning.

The protocol has a similar syntax and operation to HTTP /1.1, and the default
port is 554. Each presentation and media stream is identified by an RTSP URL
like rtsp://music.bigserver.com/new-smash-hit.ram

For error codes, HTTP error codes like “404 File not found” are re-used, but
there are also new ones like “453 Not enough bandwidth”.
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8.1 Important Methods

In the following, we will list up the most important methods to get information
about existing streams, setting up streaming sessions and then play/pause/stop
them.

8.1.1 DESCRIBE

The DESCRIBE method retrieves the description of a presentation or media
object identified by the request URL from a server.

C->S: DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/1.0
CSeq: 312
Accept: application/sdp

S->C: RTSP/1.0 200 OK
CSeq: 312
Date: 23 Jan 2001 15:35:06 GMT
Content-Type: application/sdp
Content-Length: 376

v=0

o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
s=SDP Seminar

i=A Seminar on the session description protocol
u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
e=mjh@isi.edu (Mark Handley)

c=IN IP4 224.2.17.12/127

t=2873397496 2873404696

a=recvonly

m=audio 3456 RTP/AVP 0
a=control:rtsp://server.example.com/fizzle/foo/audio
m=video 2232 RTP/AVP 31
a=control:rtsp://server.example.com/fizzle/foo/video

So the client asks the server for a media object foo and expects a description in
the application/sdp Session Description Protocol (SDP) [19]. The server answers
with a unique sequence number CSeq and a SDP block with information about
the title, author, and (in this case) multicast IP address, and time length. In
this example, we have two streams in the RTP/AVP format, and their exact
location.

8.1.2 SETUP

Now the client can set up the two RTP/AVP streams (audio and video) using
the SETUP command.
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C->S: SETUP rtsp://server.example.com/fizzle/foo/audio RTSP/1.0
CSeq: 302
Transport: RTP/AVP;unicast;client_port=4588-4589

S->C: RTSP/1.0 200 OK
CSeq: 302
Date: 23 Jan 2001 15:35:06 GMT
Session: 47112344
Transport: RTP/AVP;unicast;
client_port=4588-4589;server_port=6256-6257

C->S: SETUP rtsp://server.example.com/fizzle/foo/video RTSP/1.0
CSeq: 303
Transport: RTP/AVP;unicast;client_port=4590-4591

S->C: RTSP/1.0 200 OK
CSeq: 303
Date: 23 Jan 2001 15:35:10 GMT
Session: 47112344
Transport: RTP/AVP;unicast;
client_port=4590-4591;server_port=6258-6259

The client installs two streams for the two objects in the container (audio and
video) and the server sets them up, using the same session number.
8.1.3 PLAY

After that, both streams are started together and synchronized.

C->S: PLAY rtsp://server.example.com/fizzle/foo RTSP/1.0
CSeq: 835
Session:47112344
Range: ntp=0-

S->C: RTSP/1.0 200 DK
CSeq: 835
Date: 23 Jan 2001 15:35:16 GMT
8.1.4 PAUSE

PAUSE communication looks like PLAY. When a stream is paused, all reserva-
tions and already set up paths and streams stay alive but aren’t used.
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8.1.5 TEARDOWN

TEARDOWN communication looks like PLAY. But here, all resources associ-
ated with the session are freed. The session identifier is not valid anymore and
to restart a stream, a new SETUP request has to be sent.

How firewalls should handle RTSP, its ports and packets, is described in [20].

9 Conclusion

In this paper we have read about well defined real-time protocols, the Real-
Time Protocol (RTP) and its control facilities, the Real-Time Control Protocol
(RTCP), a profile for video and audio and an extensive part about the secure
RTP profile using an additive block-cypher encryption in counter mode. Tam-
per proveness and authentication is done by the message authentication code
UMAC. SRTP also prevents replays by maintaining replay lists, but doesn’t
define key management and distribution, which has to be done at application
level.

Then we discussed the Resource ReSerVation Protocol (RSVP) for Quality
of Service demands over IP and a HTTP-like Real-Time Streaming Protocol
(RTSP) providing “VCR-style” remote control functionality.

Still the internet community is not satisfied yet, because it still lacks of proper
applications, which really take advantage out of all these standards.

Namely, there is only RealNetworks already using RTSP, but instead of RTP,
they favor their own protocol RDP.

RSVP is supported by most of the major router companies (eg. Cisco) but
again, it is not really used by a wide community.

Finally, we can only wait for the things to come and we can say that there is a
theoretically hard basis for even secure real-time streaming over the internet.
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