Investigations Into Efficient Temporal Video Scaling

Michael Kropfberger, Klaus Leopold, Hermann Hellwagner*
April 10, 2002

Abstract

This paper discusses the different types of scaling an MPEG-4 video to saturate
a given (or changing) network bandwidth. We differentiate between realtime and
non-realtime adaptability. Mainly we will look into temporal scalability, which
means simply dropping the least important frames. This can be done on the fly, in
a realtime manner.

To do so, we have to look into the patterns generated out of subsequent frames.
Those patterns can be modified in different ways and weighted according to multiple
heuristics.

We will show an XML scheme to describe an initial state and periodically sent
modification information, and we introduce a binary representation for efficient
communication on the IP layer.

Finally, ideas on possible optimizations and our developed statistics software is
introduced.

Contents
1 Adaptation Methods 2
1.1 Non-Realtime Scalability 2
1.2 Realtime Scalability 2
2 Pattern Modification Generation 3
3 Realtime Stream Adaptation 4
4 Communication Protocol in an Adaptive Environment 6
5 BSDL (XML) Example for Video Adaptation 7
5.1 Pre-Sent Video Information, 7
5.2 Per-Pattern Information Packets 8
5.3 Modification choiceo 9
6 Efficient Binary Representation of XML Contents 10
7 Ideas on Optimization 10
8 Available Software 11
9 Conclusion and Future Work 14

*{mike,klaus, hellwagn}Qitec.uni-klu.ac.at

1 Adaptation Methods

MPEG-4[9] supports different profiles[8], how video might be coded and also scaled
to different qualities. If we’re talking about adaptability and scalability in the con-
text of video transmission over networks we have to differentiate between realtime
and non-realtime adaptability and scalability of video streams. Realtime methods
can be handled on the router side while forwarding the packets from one network
to the other. Non-realtime adaption methods have to be performed at the video
server or a video proxy server.

1.1 Non-Realtime Scalability

The amount of non-realtime scalability methods is rather huge. In this paper we’ll
outline a couple of methods for video scalability which are influencing the average
bandwidth of a video that later will be transferred over a network.

The most obvious modifications are

e reducing the resolution
e grayscale
e changing the colordepth

If the the end device is a PDA, it makes sense to resize the whole video. The
maximum resolution of such a device is quite small and the network connection is
supposed to be very low too.

Another impact on quality and bandwidth consumption is grayscaling. Some-
times the end device doesn’t support colors (PDAs) so one can save bandwidth by
grayscaling the video and transferring the transcoded video to the end device.

The colordepth is another influencing property of a video. Decreasing the amount
of bits used per pixel for describing the color value in a certain color space (RGB
or YUV), will massively decrease the overall bandwidth requirements.

When we look at the above mentioned methods, we might notice, that everything
will diminish the visual quality. It would be also interesting to enhance the visual
quality by increasing resolution, adding color depth and so on, but to allow this,
we would need the original uncompressed video data in most of the cases. Anyway,
this should be kept in mind as a viable solution in some rare cases.

1.2 Realtime Scalability

Realtime scalability describes all possibilities for intermediate devices on the way
between the server and the client, to react and adapt to the actual network load or
other environmental influences, always without delaying the video playback.

e Temporal Scalability

e Spatial Scalability[6]

e SNR Scaling (Signal to Noise Ratio)

e FGS (Fine Grained Scalability)[10][11]

All of the above mentioned methods draw heavy advantage of storing a low-
quality video in a base layer and extending the quality by adding an enhancement
layer. Those two layers are two separately stored MPEG-4 streams, where only the
enhancement layer has dependencies to the base layer.

In the following, we will investigate into efficient temporal video scaling and will
ignore all other realtime scalability methods. They will be addressed in further
publications in the near future.

2 Pattern Modification Generation

If we are talking about MPEG-4[9] Video elementary streams[7], we mean multiple
video frames encoded by different coding types known as I-Frames, P-Frames and
B-Frames, where I-Frames are independent from any other frames, P-Frames are
based on predictions from the last reference frame and B-Frames are based on
predictions of the previous and following reference frame. A reference frame might
be either an I-Frame or a P-Frame, so only B-Frames are totally unreferenced by
any other frame type.

When we look at a bitstream, we can write out a pattern generated by the sub-
sequent frame types which might look like IBPBPB. This Pattern might be repeated
over the whole video, or there will be different patterns to immediately react to scene
changes. So the first frame after a cut should be an I-Frame, with any combination
of following referencing frames.

Temporal Scalability, the simplest way of adaptation, allows us to simply drop
frames out of a stream, where the decoder only has to cope with the missing frames,
which shouldn’t be much of a problem, since every frame has a presentation times-
tamp stored in its structure. It is the decoders’ duty to interpolate over missing
frames or at least keep the last shown frame viewed until the next available frame
has to be presented.

e B-Frames can be dropped at will since there no other frames referencing them

e When dropping a P-Frame P,, all previous B-Frames forward-referencing! P,
and all following P, :», and B-Frames have to be dropped too
eg. IPBBPBBPBB (P) BBPBBI — IPBBPBBP (BBPBBPBB) I

e Dropping I-Frames means losing all following P and B-Frames until the next
I-Frame, and again all forward-referencing B-Frames. Since I-Frames are used
very seldomly in a frame pattern, dropping I-Frames makes nearly no sense.

To add more flexibility on possible adaptions, MPEG-4 also supports a two-layer
approach, where the base layer stores eg. I-B-P-B-P-B- and the enhancement layer
stores ~-P-B-B-P-B-B. When those two layers are interleaved, the received pattern
would be
IPBBPBBPPBBB. Since the enhancement layeris totally independent, we can also drop
the whole enhancement layer (eventually including P-Frames) without interfering
with any P-Frames stored in the base layer.

Figure 1 shows a possible (non-exhaustive) modification tree on a base layer
pattern where some combinations are grayed out, so they won’t go into the pool
of possible pattern modifications. This Pool will be supported by the routers as a
valid adaption to a detected bandwidth. Since we know the frame sizes for I, P and
B-Frames occurring in this pattern, we can store accumulated pattern bandwidth
requirements for each node. This bandwidth requirement is the main selection
criteria for Routers to choose a specific modification.

Good heuristics for generating a usable pattern tree are based on

e Importance (I > P > B)
e Timely balanced distribution

— Pattern I-*-P-*-P- better than I-B-P-*—x-

IB-Frames have a back- and forward-reference frame, where both might be either an I or P-
Frame. So we have to drop all B-Frames after either P,_; or the nearest I-Frame in backward
direction.

1 150,139 BpS
I-B-P-B-P-B

__—

2 131,174BpS 3 101,145BpS
I-B-P-*-P-B |-*-P-B-P-*

6 87,045BpS
I_*_P_*_P_*
'

7 64,089 BpS
I_*_P_*_*_*
!

8 50,000 BpS

I_*_*_*_*_*

Figure 1: Tree of Possible Base Layer Pattern Modifications

— skipping the whole enhancement layer might even be better than P——*—%—%-x%
(not worth the hassle)

e averaged Signal to Noise Ratio (SNR) for modified pattern
e Tree size vs. fine grained scalability

— Tree chopping with respect to the above mentioned heuristics like timely
balanced distribution

— delete similarly sized nodes based on threshold values possible decision
rules are:

* preferring higher frame rates
x preferring higher-quality patterns (I-*-P-*-P- better than I-B-*-B—*-)

Figure 2 shows possible enhancement layer pattern modifications following the
same rules as a base layer tree, except the final node might be an empty one, which
means skipping the whole enhancement layer.

Dealing with scalable streams will add further complexity and adaptation re-
strictions to the above mentioned approach, since the enhancement layer might
reference to reference frames in the base layer. Chopping also has to be done with
respect to the achievable “Quality” of combinations of base and enhancement layer
patterns.

3 Realtime Stream Adaptation

To be efficient in the routers, we have to break down the chopped trees into lists
or binary trees sorted by the needed bandwidth per pattern (or Bits per second).
These modification pools will be transmitted to the subsequent routers, so they can
chose the best fitting pattern modification. Video frames are sent via RTP [13]
using a standardized packet format for MPEG-4 [12].

1 (avg)Size

-P-B-B-P-B-B
2 (avg)Size 3 (avg)Size
-P-B-*-P-*-B -P-*-B-P-B-*

6 (avg)Size

- p_*_-k_ P_*_*

7 (avg)Size

_k_k_k_k_*k_*%

Figure 2: Tree of Possible Enhancement Layer Pattern Modifications

Router Clientl
Server I-B-P-*-P-B- IPB*PB* PPBB*

Modification Pool Modification Pool

- S?S:_I‘Ba_yg:B_ Enhancement Layer:

{ '| | {-P-B-B-P-B-B, :

I-B-P*-P-B-, | | h5s pep Client2

[-*-P-B-P-*-, -P-*-B-P-B-*, IPB* PB* PPBB* -P-*-B-P-B-*
|_*_P_*_P_*_y =N - |—B‘P‘*_ P‘B_
|'*'P'*'*'*': _*_*_*_*_*_*}’

I_*_*_*_*_*_}

Figure 3: Two clients requesting same quality, base and enhancement layer arrive
via multicast

The RouterSrv reads the base layer and enhancement layer from disk and only
sends the requested frames to the next Router hop. This next Router requests the
maximum frame pattern of all connected clients (or following routers). In Figure 3,
both clients want the same quality, so the adapted base and enhancement layer is
sent via multicast.

To keep network traffic low, we share as much information possible in the mul-
ticast layers. As shown in Figure 4, the Router generates a shared base and
enhancement layer and extracts two new enhancement layers and one base layer
adjusted for the two clients’ individual needs. Since standardized players are only
capable of one base layer and one enhancement layer, we have to add an intelligent
client side “network funnel” that puts together multicasted and unicasted frames
into a correct base and enhancement layer format, which is feeded to the real player.
We will need this extra intelligence on client side anyways, since we want to talk
with our Router using or sophisticated protocol.

Router

“P*-BPB-* Clientl
* * * %
I_B_P_*_P_*_ IPB P* PPB
Modification Pool | |\, sification Pool FoB-Xororo-
- g?s:. I;Yg :B- Enhancement Layer:
{ '| | {-P-B-B-P-B-B, :
I-B-P-*-P-B-, -P-B-*-P-*-B Cllmtz
I-*-P-B-P-*-, _p_*_B_p_B_*’ |P**PB** PB**
[-*-P-*-P-*-, _P_*_*_P_*_*’
|'*'P‘*'*'*‘, _*_*_*_*_*_*’ _*_*_B_*_*_*
|_*_*_*_*_*_} }

Figure 4: Newly generated shared layers arrive via multicast, unique parts are sent
directly

4 Communication Protocol in an Adaptive Envi-

ronment

1. A new Client sends initial specification of video name, resolution, environment
and more to the Router

2. The Router requests the initial video information like resolution, colordepth,
average bandwidth and average bandwidth reached by maximum adaptivity
(see XML in Section 5.1)

3. RouterSrv sends first modification pool (in any efficient representation format)
with bandwidth requirements respective to the different modifications (see
XML in Section 5.2)

4. The Router checks available bandwidth to Client(s)

5. Router requests necessary maximum frame pattern to serve all connected
Clients

6. RouterSrv sends out the requested frame pattern and the next modification
pool (see Figure 5)

Time to check for
necessary adaptions
& modification request

Time to check for
necessary adaptions
& modification request

Time to check for
necessary adaptions
& modification request

— H H—
ModPooln-1 ModPooln ModPooln+1
Patternnz Patternnfl Patternn
- - - = == - - - — — = — — — — — >
time

Figure 5: Modification Pool M P, is sent with Pattern P, 1, so there is enough
time to react to changing bandwidth requirements

7. Router sends out the shared base and enhancement layer frames via multicast

8. Router generates the specific base and enhancement layers and sends them to
the connected Clients via unicast

9. if no new clients arrive, go back to Step 4

5 BSDL (XML) Example for Video Adaptation

The following XML[4] examples should only show the basic idea of what has to be
sent when to the client, ignoring any real BSDL[5] conform style guides. In the
near future we will “transcode” our XMLish idea into BSDL, using the correct style
sheets and capabilities[14]. For now, we kindly ask the interested reader to accept
this as an incomplete substitute.

5.1 Pre-Sent Video Information

This information is sent when a connection is set up. It contains basic information
about the quality of the video, the connection properties and possible non-realtime
modifications to adapt the video quality to the network’s (client’s) bandwidth.

The network section of the XML file contains information about the base and
enhancement (if any) layers. The RTP ID of the particular stream is sent as well
as the bandwidth the stream will consume (in bits per seconds).

The Modifications section of the XML file tells the router the possible adaptions
and the benefits. Every modification has a distinct number during the whole session
which is represented in the ModID tag. The ScaleType tag reads the type of the
scalability. In this paper we concentrate on the type of Temporal scalability. Other
ScaleTypes could be Spatial, SNR, Object or Audio for example.

If the router chooses a modification with its Scale Type set to Temporal, it will
receive modification patterns as described in the next subsection.

In the context of adaption on the router side the Feasibility tag indicates whether
the router can make the adaption or not - routers can just do RealTime modifi-
cations of the stream. There are a lot of non real time modifications that can be
handled on a proxy for example.

<Init>
<Resolution>
<X>352</X>
<Y>288</Y>
</Resolution>
<FrameRate>15</FrameRate>
<ColorDepth>12</ColorDepth>

<BaselLayer>
<RTPid>514</RTPid>
<BpS>150000</BpS>

<Modifications> <!-- Possible modifications -->
<Choice>
<Feasibility>RealTime</Feasibility>
<ModID>0</ModID> <!-- Modification ID -->
<ScaleType>Temporal</ScaleType> <!-- Type of modification -->
</Choice>
<Choice>
<Feasibility>NonRealTime</Feasibility>
<ModID>1</ModID> <!-- Modification ID -->
<ScaleType>GrayScale</ScaleType> <!-- Type of modification -->
<BpS>67000</BpS>

</Choice>
</Modifications>
</BaselLayer>

<EnhancelLayer>
<RTPid>516</RTPid>
<BpS>200000</BpS>

<Modifications> <!-- Possible modifications -->
<Choice>
<Feasibility>RealTime</Feasibility>
<ModID>0</ModID> <!-- Modification ID -->
<ScaleType>Temporal</ScaleType> <!-- Type of modification -->
</Choice>
<Choice>
<Feasibility>NonRealTime</Feasibility>
<ModID>1</ModID> <!-- Modification ID -->
<ScaleType>GrayScale</ScaleType> <!-- Type of modification -->
<BpS>113000</BpS>
</Choice>
</Modifications>
</Enhancelayer>
</Init>

5.2 Per-Pattern Information Packets

This XML file shows the regularly sent information needed for temporal scalability
on a certain RTP connected bitstream. Starting with a RTP sequence number, a
certain number of frames (a pattern) will be sent and they may be modified by
choosing out of the attached modification pool sorted by bandwidth sizes.

The RTP SeqStart tag lets the router know the first RTP sequence number of
the pattern, so the router can easily estimate the correct RTP packets to drop or
keep.

In the Modifications section there’s another BpS tag which indicates the band-
width if this modification is chosen. After the BpS tag the scale/adaption commands
are listed. The Drop tag indicates that the content of the next frames have to be
dropped.

<Pattern>
<BaselLayer>
<RTPid>514</RTPid>
<NumFrames>30</NumFrames> <!-- no of frames in the following pattern -->
<RTPseqStart>3456</RTPseqStart>
<Modifications>
<Feasibility>RealTime</Feasibility>
<Choice> <!-- No Modification -->
<ModID>0</ModID>
<ScaleType>None</ScaleType>
<BpS>150000</BpS>
<TotalSize>300000</TotalSize>
</Choice>
<Choice> <!-- drop every 8th frame -->
<ModID>1</ModID>

<ScaleType>Temporal</ScaleType>

<BpS>100000</BpS>
<TotalSize>200000</TotalSize>
<Drop>
<Frame>8</Frame>
<Frame>18</Frame>
<Frame>28</Frame>
</Drop>
</Choice>
<Choice> <!-- drop every 5th frame, temporally distributed -->
<ModID>2</ModID>
<ScaleType>Temporal</ScaleType>
<BpS>80000</BpS>
<TotalSize>160000</TotalSize>
<Drop>
<Frame>3</Frame>
<Frame>8</Frame>
<Frame>13</Frame>
<Frame>18</Frame>
<Frame>23</Frame>
<Frame>28</Frame>
</Drop>
</Choice>
</Modifications>
</BaselLayer>

<EnhancelLayer>
<RTPid>516</RTPid>
<Modifications>

</Modifications>
</Enhancelayer>
</Pattern>

5.3 Modification choice

If the router decides to adapt a video stream, it has to inform the server about the
modification. In order to consume as less bandwidth as possible the server also has
to adapt the multicast stream to the router with the least common patterns for all
clients (see Section 3).

The choice of a modification is rather simple. The router just sends the RTP
ID and the modification ID to the server.

<Choose>
<RTPid>514</RTPid>
<ModID>5</ModID>
</Choose>

0 8 16 32 63
Verson H ScalingType H reserved NumFrames (34) H NumMods (5)
RTPid (514) RTPsegNo (341634)
kbps (150) 1111111111111111111‘1‘1‘1‘1‘1 1‘1‘1‘1‘1‘1‘1‘1‘1‘4 padding | kbps(135) |1(1|1/0[1|1]1

1/1/1{0/1/1|1/1{1{1{1|0(1|1(1|1{1]|1/1|0(1|1|1 1|1|1| padding | kbps(120) |1|1|10/1]1{1/0{1/1/10/11/1|0/1/1]1/0|1|1]1

1j1f1/oj2[2]1|o|1|2|z]o|1|1|2|o[1]1|1/0[z|1]1|0[1]1| padding | kbps(100) 1|0/1/0[1|0[1/0|1j0|10|2/0/1|0|1|0|1 0|2 01

-

0/0/0|1|0|00(1|0|0|0O|1/0/0|0|1|0|0/0|1|0|0

o

1/0{1|0/1|0|1|0{1/0{1|0|1|0|1|0|1|0|1|0|1|0|1|0|1 padding | kbps(70)

1/0/0|0/1|0|0|0Of1/0[0|0|1|0/0|0Of1|0|0|0O|1|0|0|0|1|0 padding

Figure 6: Packet format for per-pattern modification pool

6 Efficient Binary Representation of XML Con-
tents

Since we cannot directly handle XML files on the router side because of performance
issues, we have to send a highly efficient binary representation of at least the peri-
odically sent per-pattern modification pool. This low-level packet layout (Figure 6)
is preferred to an automatically generated MPEG-21 BiM representation, because
with our approach we keep the packet size at a minimum. Other devices might still
receive their XML (BSDL) information in a less efficient BiM representation, since
the data stored in our packet format and the XML are identical.

7 Ideas on Optimization

Even with the very low network footprint of the regularly sent pattern modification
packets, we will add an average network load of approx. 60-100 bytes. In normal
cases we can easily ignore this overhead, but on very low bandwidth networks,
maybe with large minimal packet sizes or other per-connection overhead, but also
to save computational power on the router side, we would like to further reduce the
amount of data to send or process.

Given the case that

e a video uses the same pattern repeatedly over the whole lifetime (or at least
for a couple of iterations),

e the average needed bandwidth per pattern is very similar,
e and the average framesizes between and within the patterns are similar,

we could merge multiple patterns into a pattern group. Each pattern group will
hereby represent eg. the next fifty patterns and we calculate the pattern modifica-
tion tree based on this averaged pattern group.

After building a list of very few pattern groups reflecting the whole video, we
can send these few pattern modification lists within the initially transmitted video
information XML file. No further updates are necessary, and the router knows
exactly when to install the next modification list.

Unfortunately our measurements on different videos with multiple qualities, pat-
terns and MPEG-4 encoders[3][2][1] revealed, that we cannot rely on the above
mentioned assumptions at all.

There are too high variations already on a frame-to-frame basis, which make a
pattern group, given a reasonable threshold, too small and patterns which seemed
to belong to one pattern group by having the same average bandwidth, would differ

10

from each other after applying modifications, which means dropping frames on
certain positions in the pattern (see Figure 7).

Frame Sizes
15000 T T
I-Frame
P-Frame
B-Frame
10000 |- R
3
>
m
£
g
N
(]
IS
®©
T
5000

0 200 400 600 800 1000 1200 1400 1600 1800
Frame Numbers

Figure 7: Frame Size Variations

The only possibility to reach the requirements would be a fixed bitrate encoding,
which is not sufficiently supported by any of the MPEG-4 ISO encoders yet and
would imply massive quality loss or bandwidth overhead.

8 Available Software

We wrote a statistic suite including frame types and sizes, average deviations with
threshold triggers. We can detect patterns over a video, again with average band-
widths and exact frame sizes, threshold triggers to indicate deviation to the prior
patterns. We cumulate patterns into pattern groups and we generate averaged
frame sizes and bandwidth requirements.

Total input bytes = 5196951
Number of VOPs = 1798

Frame I-Frame(avg|deviation) P-Frame(avg|deviation) B-Frame(avg|deviation)
0 6567

11

N

[¢;]

© 00 ~NO»

10

12
13
14
15
16
17

18
19

20

21
22
23
24
25

26

27
28
29
30
31
32

33

1780
1781
1782
1783
1784
1785
1786

1211

1142(1176 -34| 3%)

1215(1195] 20| 2%)

*%x% HIGH DEVIATION sx*x
1535(1535| 170(112%)

1485(15101 -25[2%)

6779(6673 106| 2%)
x%% HIGH DEVIATION *%x*
1120(1120| -195]15%)
1180(1150 30| 3%)
x%% HIGH DEVIATION *%x*
1419(1419| 135[11%)
1455(1437| 181 1%)
1566(1501| 65| 4%)
13221(13282| -61| 0%)
6346(6134| 212] 3%)
6543(6338 205 3%)

12

780
x%% HIGH DEVIATION *%x*
1052(1052| 136|15%)

*%% HIGH DEVIATION **x

678(678| -18722%)
801(739 62| 8%)
751(745| 61 1%)
737C 741l -4 1%)
807(774 33| 4%)
849(811| 38| 5%)
887(849| 38| 4%)
863(856 71 1%)

x%% HIGH DEVIATION *%x*
687(687 -84[11%)
769(728| 41| 6%)

*%x% HIGH DEVIATION »**x*

430(430| -149(26%)
475(452| 23| 5%)
404(428| -24| 6%)
483(455| 28| 6%)

*%% HIGH DEVIATION **x

668(668 107|19%)
645(656 -11] 2%)
574(615| -41] 7%)
704(659 45| %)

*%% HIGH DEVIATION x**x*

994(994| 168]20%)
1205(1099| 106]10%)
3969(3781| 188]| 5%)
3663(3722] -59| 2%)
3836(37791 571 2%)
4234(4006| 228]| 6%)

1787
1788
1789
1790
1791
1792
1793
1794
1795

1796
1797

I-Frames
P-Frames
B-Frames

1(16frm): tsize:

2(18frm) :
3(18frm) :
4(18frm):
5(18frm) :
6(18frm) :

tsize:
tsize:
tsize:
tsize:
tsize:

##4##4 *xxEND OF PATTERN GROUP (5

7(18frm) :
8(18frm) :
9(18frm) :
10(18frm) :
11(18frm) :
12(18frm) :
13(18frm) :
14(18frm) :
15(18frm) :
16(18frm) :
17(18frm) :
18(18frm) :

tsize:
tsize:
tsize:
tsize:
tsize:
tsize:
tsize:
tsize:
tsize:
tsize:
tsize:
tsize:

Finally we support tools to generate an index for a MPEG-4 bitstream with
frame type, size and state (drop vs. keep). We can feed the bitstream with this
description index to generate bitstreams with the adapted video and the dropped
frames. For control issues, we have a tool to merge those two files back into the

original video.

6207 (6272

6348(6310

4534(
4280(

-65| 1%)
4214(
4517¢(

381 1%)
4259(
4701(

x*%* HIGH DEVIATION *%x
4621(4621 -844]15%)

4520 (

4270|
4275

4244 |
4380]|

4319
4510]|

4515

264 6%)
5] 0%)

-30|
137

1%)
3%)

-60|
191

1%)
4%)

5] 0%)

*%% HIGH DEVIATION x***

5575(

TNo TSize TAvg
100 815961 8159
500 1611609 3223
1198 2769348 2311

21360 (0%) avg 1335: IPBBPBBPBBPBBPBB
#4444 *++END OF PATTERN GROUP (1 pats)kkx

21557
24178
25941
26183
27913

28759
26972
27984
27179
29253
30943
32198
33079
34221
33450
33496
34054

(0%) avg 1197:
(-12%)
(-20%)
(-21%)
(-29%)

pats) %k %k

oW
C 6%)
C 3%
C 5%)
-2
(-8%
(-12%)
(-15%)
(-19%)
(-16%)
(-16%)
(-18%)

1597:
1498:
1554:
1509:
1625:
1719:

avg
avg
avg
avg
avg
avg
avg
avg
avg
avg
avg
avg

13

avg 1343:
avg 1441:
avg 1454:
avg 1550:

1788:
1837:
1901:
1858:
1860:
1891:
##4##4# *x+xEND OF PATTERN GROUP (12 pats) *xx*

avgTsize 21360 avgFrmSize

IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPEB
IBBPBBPBBPBBPBBPEB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPBB

avgTsize 25154 avgFrmSize

IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPEBPBBPBB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPBB
IBBPBBPBBPBBPBBPEB
IBBPBBPBBPBBPBBPEB
IBBPBBPBBPBBPBBPEB

avgTsize 30965 avgFrmSize

5575

530([11%)

1335

1397

1720

9 Conclusion and Future Work

In this paper we outlined different types of scaling an MPEG-4 video to adapt to
network bandwith changes. We decribed the internal representation of an MPEG-4
video bitstream and introduced the idea of pattern generation and modification of
frame groups to do realtime adaptation for a video stream on a router. We outlined
a communication protocol in an adaptive environment based on XML and described
an efficient representation of the XML content so it can be handled by a router.
Furthermore we presented ideas on optimization for the pattern generation and
modification which can’t be realized without restrictions.

Presently we are working on intelligent algorithms to generate patterns to mas-
sively improve the quality of the video on clients’ side despite dropping frames on
a router. Further more we are trying to deploy other methods for video scaling on
a router separate from temporal scaling.

14

References

[1]

[2]
[3]

[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Mpegdip. ISO/IEC 14496 Microsoft MPEG-4 Video Reference Software.
http://mpegdip.sourceforge.net/.

Opendivx. http://www.projectmayo.com/.

MoMuSys: Mobile Multimedia Systems. ISO/IEC 14496 MPEG-4 Video Refer-
ence Software, ACTS-AC098, 1995-1999. Partners: Bosch, Siemens, University
of Hamburg and Madrid, Deutsche Telekom, Heinrich Hertz Institut, and more.

Extensible Markup Language (XML) 1.0 (Second Edition). W38C Recommen-
dation, October 6th 2000. http://www.w3.org/TR/2000/REC-xml-20001006.

Sylvain Devillers. Bitstream Syntax Definition Language (BSDL): An Input
to MPEG-21 Content Representation. ISO/IEC JTC1/5C29/WG11 M7053,
March 2001.

Rakesh Dugad and Narendra Ahuja. A Scheme for Spatial Scalabil-
ity Using Nonscalable Encoders. submitted for publication in IEEE
Trans. Circuits and Systems for Video Technology, September 2001.
http://vision.ai.uiuc.edu/dugad/.

Carsten Herpel and Alexandros Eleftheriadis. MPEG-4 Systems: Elementary
Stream Management. Image Communication Journal. Tutorial Issue on the
MPEG-4 Standard, 15(1-2), January 2000.
http://leonardo.telecomitalialab.com/icjfiles /mpeg-4.si/.

Rob Koenen. Profiles and Levels in MPEG-4: Approach and Overview. Image
Communication Journal. Tutorial Issue on the MPEG-4 Standard, 15(1-2),
January 2000. http://leonardo.telecomitalialab.com/icjfiles/mpeg-4.si/.

Rob Koenen. Overview of the MPEG-4 Standard. ISO/IEC
JTC1/5C29/WG11 N4030, March 2001. http://mpeg.telecomitalialab.com/.

Weiping Li. Overview of Fine Granularity Scalability in MPEG-4 Video Stan-
dard. IEEE Trans. Circuits and Systems for Video Technology, 11(3), March
2001.

Matthias Ohlenroth and Hermann Hellwagner. Quality Adaptation Options
of MPEG-4 Video Streams. Technical Report TR/ITEC/01/1.03, University
Klagenfurt, December 2001.

Matthias Ohlenroth and Hermann Hellwagner. RTP Packetization of MPEG-4
Elementary Streams. Technical Report TR/ITEC/02/1.01, University Klagen-
furt, February 2002.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 1889: RTP: A
Transport Protocol for Real-Time Applications, January 1996.

Anthony Vetro. MPEG-21 Requirements on Digital Item Adaptation. ISO/IEC
JTC1/SC29/WG11 N4515, December 2001.

15

